Structure–function analysis reveals that the Pseudomonas aeruginosa Tps4 two-partner secretion system is involved in CupB5 translocation
نویسندگان
چکیده
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, synonymous with cystic fibrosis patients, which can cause chronic infection of the lungs. This pathogen is a model organism to study biofilms: a bacterial population embedded in an extracellular matrix that provide protection from environmental pressures and lead to persistence. A number of Chaperone-Usher Pathways, namely CupA-CupE, play key roles in these processes by assembling adhesive pili on the bacterial surface. One of these, encoded by the cupB operon, is unique as it contains a nonchaperone-usher gene product, CupB5. Two-partner secretion (TPS) systems are comprised of a C-terminal integral membrane β-barrel pore with tandem N-terminal POTRA (POlypeptide TRansport Associated) domains located in the periplasm (TpsB) and a secreted substrate (TpsA). Using NMR we show that TpsB4 (LepB) interacts with CupB5 and its predicted cognate partner TpsA4 (LepA), an extracellular protease. Moreover, using cellular studies we confirm that TpsB4 can translocate CupB5 across the P. aeruginosa outer membrane, which contrasts a previous observation that suggested the CupB3 P-usher secretes CupB5. In support of our findings we also demonstrate that tps4/cupB operons are coregulated by the RocS1 sensor suggesting P. aeruginosa has developed synergy between these systems. Furthermore, we have determined the solution-structure of the TpsB4-POTRA1 domain and together with restraints from NMR chemical shift mapping and in vivo mutational analysis we have calculated models for the entire TpsB4 periplasmic region in complex with both TpsA4 and CupB5 secretion motifs. The data highlight specific residues for TpsA4/CupB5 recognition by TpsB4 in the periplasm and suggest distinct roles for each POTRA domain.
منابع مشابه
Structural and Functional Characterization of Pseudomonas aeruginosa CupB Chaperones
Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for ∼10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e.g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containin...
متن کاملفراوانی ژنهای کد کننده سیتوتوکسینهای exoT، exoY، exoS وexoU سیستم ترشحی تیپ 3 در سودوموناس آئروجینوزا جدا شده از بیماران سوختگی
Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial burn infections. Disease results from the production of numerous virulence factors, some of which are injected directly into the eukaryotic host cells via the type III secretion system (T3SS).The aim of this study was to determine the prevalence of cytotoxins encoding exoT, exoY, exoS and exoU genes...
متن کاملOverexpression of CupB5 activates alginate overproduction in Pseudomonas aeruginosa by a novel AlgW-dependent mechanism.
In Pseudomonas aeruginosa, alginate overproduction, also known as mucoidy, is negatively regulated by the transmembrane protein MucA, which sequesters the alternative sigma factor AlgU. MucA is degraded via a proteolysis pathway that frees AlgU from sequestration, activating alginate biosynthesis. Initiation of this pathway normally requires two signals: peptide sequences in unassembled outer-m...
متن کاملPcrH of Pseudomonas aeruginosa is essential for secretion and assembly of the type III translocon.
Pseudomonas aeruginosa harbors a type III secretion system that translocates antihost effectors into an infected eukaryotic cell. PcrH is a key component of type III secretion in this essential virulence strategy. In the absence of PcrH, P. aeruginosa is translocation deficient because of a specific reduction in presecretory stability and subsequent secretion of PopB and PopD, 2 proteins essent...
متن کاملA type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia.
Virulence of Pseudomonas aeruginosa is typically attributed to its type III secretion system (T3SS). A taxonomic outlier, the P. aeruginosa PA7 strain, lacks a T3SS locus, and no virulence phenotype is attributed to PA7. We characterized a PA7-related, T3SS-negative P. aeruginosa strain, CLJ1, isolated from a patient with fatal hemorrhagic pneumonia. CLJ1 is highly virulent in mice, leading to ...
متن کامل